Difference between revisions of "Noise stability"

From Boolean Zoo
Jump to: navigation, search
(Properties)
m (Definition)
 
(3 intermediate revisions by the same user not shown)
Line 6: Line 6:
 
-x_{i} & with\space prabability\space \frac{1}{2}-\frac{1}{2}\rho
 
-x_{i} & with\space prabability\space \frac{1}{2}-\frac{1}{2}\rho
 
\end{cases}</math><br>
 
\end{cases}</math><br>
Informally, the Stability tells us what is the chance for the function to stay the same when the input is under noise.
+
Informally, the stability tells us what is the chance for the function to stay the same when the input is under noise.
  
 
== Properties ==  
 
== Properties ==  
 
* In case of <math>f:\{-1,1\}^{n}\rightarrow \{-1,1\}</math> , <math>Stab_{\rho}[f]=2\underset{\underset{\rho-correlated}{(x,y)}}{\mathbb{P}}[f(x)=f(y)]-1</math>
 
* In case of <math>f:\{-1,1\}^{n}\rightarrow \{-1,1\}</math> , <math>Stab_{\rho}[f]=2\underset{\underset{\rho-correlated}{(x,y)}}{\mathbb{P}}[f(x)=f(y)]-1</math>
 
* For <math>f:\{-1,1\}^{n}\rightarrow \{-1,1\}</math>, and for <math>\rho∈[0,1]</math> the connection to [[Noise sensitivity]] is by <math>Stab_{\rho}[f]=1-2NS_{\frac{1}{2}-\frac{1}{2}\rho }[f]</math>
 
* For <math>f:\{-1,1\}^{n}\rightarrow \{-1,1\}</math>, and for <math>\rho∈[0,1]</math> the connection to [[Noise sensitivity]] is by <math>Stab_{\rho}[f]=1-2NS_{\frac{1}{2}-\frac{1}{2}\rho }[f]</math>
* The [[Majority]] function is assumed to be the least stable function among the [[Linear threshold]] when <math>n</math> is big and <math>\rho</math> is small.
+
* The [[Majority]] function is assumed to be the least stable function among the [[Linear threshold]] when <math>n</math> is big and <math>\rho</math> is small. <ref>Ryan O'Donnell, Analysis of Boolean functions, [http://www.contrib.andrew.cmu.edu/~ryanod/?p=2245 Chapter 2.4]</ref>
  
 
== References ==
 
== References ==
<ref>Ryan O'Donnell, Analysis of Boolean functions, Chapter 2.4 [http://www.contrib.andrew.cmu.edu/~ryanod/?p=2245]</ref>
+
<references/>

Latest revision as of 09:52, 1 November 2020

Definition

For [math]f:\{-1,1\}^{n}\rightarrow\mathbb{\mathbb{R}} [/math] and [math]\rho∈[−1,1][/math], the noise stability of [math]f[/math] at [math]\rho[/math] is [math]Stab_{\rho}[f]=\underset{\underset{\rho-correlated}{(x,y)}}{\mathbb{E}}[f(x)f(y)][/math], where [math] x [/math] and [math]y [/math] are [math]\rho[/math]-correlated if [math] y_{i}=\begin{cases} x_{i} & with\space prabability\space \frac{1}{2}+\frac{1}{2}\rho\\ -x_{i} & with\space prabability\space \frac{1}{2}-\frac{1}{2}\rho \end{cases}[/math]
Informally, the stability tells us what is the chance for the function to stay the same when the input is under noise.

Properties

  • In case of [math]f:\{-1,1\}^{n}\rightarrow \{-1,1\}[/math] , [math]Stab_{\rho}[f]=2\underset{\underset{\rho-correlated}{(x,y)}}{\mathbb{P}}[f(x)=f(y)]-1[/math]
  • For [math]f:\{-1,1\}^{n}\rightarrow \{-1,1\}[/math], and for [math]\rho∈[0,1][/math] the connection to Noise sensitivity is by [math]Stab_{\rho}[f]=1-2NS_{\frac{1}{2}-\frac{1}{2}\rho }[f][/math]
  • The Majority function is assumed to be the least stable function among the Linear threshold when [math]n[/math] is big and [math]\rho[/math] is small. [1]

References

  1. Ryan O'Donnell, Analysis of Boolean functions, Chapter 2.4