Difference between revisions of "Majority"

From Boolean Zoo
Jump to: navigation, search
(Created page for majority function.)
 
m (Properties)
Line 11: Line 11:
 
* Majority is a [[monotone function]].
 
* Majority is a [[monotone function]].
 
* TODO: a description of Majority's Fourier Transform. See http://www.contrib.andrew.cmu.edu/~ryanod/?p=877 for details.  
 
* TODO: a description of Majority's Fourier Transform. See http://www.contrib.andrew.cmu.edu/~ryanod/?p=877 for details.  
* Majority is the stablest Boolean function. <ref>Ryan O'Donnell, Analysis of Boolean functions, [http://www.contrib.andrew.cmu.edu/~ryanod/?p=2245]/</ref>
+
* Majority is the stablest Boolean function. <ref>Ryan O'Donnell, Analysis of Boolean functions, [http://www.contrib.andrew.cmu.edu/~ryanod/?p=2245]</ref>
 
 
  
 
== References ==
 
== References ==
 
<references/>
 
<references/>

Revision as of 11:37, 2 September 2018

Definition

A function [math]f:\{-1,1\}^n \to \{-1,1\}[/math] is called a majority function if [math]f(x)[/math] returns the most common bit in the input:

[math] f(x) = \begin{cases} 1, & if ~ \sum_i x_i \geq 0 \\ -1 & otherwise \end{cases}[/math]

For even [math]n[/math], the above definition breaks ties in favor of 1, although any arbitrary rule may be used instead.

Properties

References

  1. Ryan O'Donnell, Analysis of Boolean functions, [1]