Difference between revisions of "Noise sensitivity"

From Boolean Zoo
Jump to: navigation, search
(Properties)
m
Line 3: Line 3:
  
 
== Properties ==
 
== Properties ==
*The connection between noise sensitivity and [[Stability]] is given by <math>NS_{\delta}[f]=\frac{1}{2}-\frac{1}{2}Stab_{1-2\delta}[f]</math>
+
*The connection between noise sensitivity and [[Stability]] is given by <math>NS_{\delta}[f]=\frac{1}{2}-\frac{1}{2}Stab_{1-2\delta}[f]</math>. <ref>Ryan O'Donnell, Analysis of Boolean functions, Chapter 2.4 [http://www.contrib.andrew.cmu.edu/~ryanod/?p=2245]</ref>
*For <math>\delta\leq\frac{1}{2}</math>, and <math>f</math> is [[Linear threshold]] function (<math>f(x)=sgn(\sum_{i=1}^{n}\omega_{i}x_{i}-t)</math>), then <math>NS_{\delta}[f]\leq2\delta^{1/2}</math>. furthermore, <math>\underset{\delta\rightarrow0}{\limsup}\frac{\limsup_{n\rightarrow\infty}\sup_{\omega,t}NS_{\delta}[f]}{\sqrt{\delta}}\leq\sqrt{\frac{2}{\pi}}</math> (Peres, 2006)
+
*For <math>\delta\leq\frac{1}{2}</math>, and <math>f</math> is [[Linear threshold]] function (<math>f(x)=sgn(\sum_{i=1}^{n}\omega_{i}x_{i}-t)</math>), then <math>NS_{\delta}[f]\leq2\delta^{1/2}</math>. furthermore, <math>\underset{\delta\rightarrow0}{\limsup}\frac{\limsup_{n\rightarrow\infty}\sup_{\omega,t}NS_{\delta}[f]}{\sqrt{\delta}}\leq\sqrt{\frac{2}{\pi}}</math>. <ref>Peres (2004). "Noise Stability of Weighted Majority" [http://www.contrib.andrew.cmu.edu/~ryanod/?p=2245]</ref>
  
 
== References ==
 
== References ==
<ref>Ryan O'Donnell, Analysis of Boolean functions, Chapter 2.4 [http://www.contrib.andrew.cmu.edu/~ryanod/?p=2245]</ref>
+
<references/>
<ref>Peres (2004). "Noise Stability of Weighted Majority" [http://www.contrib.andrew.cmu.edu/~ryanod/?p=2245]</ref>
 

Revision as of 10:13, 29 October 2020

Definition

For [math]f:\{-1,1\}^{n}\longrightarrow\{-1,1\}[/math] and [math]\delta\in[0,1][/math], the noise sensitivity of [math]f[/math] at [math]\delta[/math], [math]NS_{\delta}[f][/math], is the probability that [math]f(x)\neq f(y)[/math] when [math]x\sim\{-1,1\}^{n}[/math] is uniformly random and [math]y[/math] is formed from [math]x[/math] by reversing each bit independently with probability [math]\delta[/math].

Properties

  • The connection between noise sensitivity and Stability is given by [math]NS_{\delta}[f]=\frac{1}{2}-\frac{1}{2}Stab_{1-2\delta}[f][/math]. [1]
  • For [math]\delta\leq\frac{1}{2}[/math], and [math]f[/math] is Linear threshold function ([math]f(x)=sgn(\sum_{i=1}^{n}\omega_{i}x_{i}-t)[/math]), then [math]NS_{\delta}[f]\leq2\delta^{1/2}[/math]. furthermore, [math]\underset{\delta\rightarrow0}{\limsup}\frac{\limsup_{n\rightarrow\infty}\sup_{\omega,t}NS_{\delta}[f]}{\sqrt{\delta}}\leq\sqrt{\frac{2}{\pi}}[/math]. [2]

References

  1. Ryan O'Donnell, Analysis of Boolean functions, Chapter 2.4 [1]
  2. Peres (2004). "Noise Stability of Weighted Majority" [2]