Difference between revisions of "Majority"

From Boolean Zoo
Jump to: navigation, search
m (Properties)
m (Definition)
Line 2: Line 2:
 
A function <math>f:\{-1,1\}^n \to \{-1,1\}</math> is called a '''majority function''' if <math>f(x)</math> returns the most common bit in the input:
 
A function <math>f:\{-1,1\}^n \to \{-1,1\}</math> is called a '''majority function''' if <math>f(x)</math> returns the most common bit in the input:
  
<math> f(x) = \begin{cases} 1, & if ~ \sum_i x_i \geq 0 \\  
+
:::{| class="wikitable"
 +
|-
 +
|<math> f(x) = \begin{cases} 1, & if ~ \sum_i x_i \geq 0 \\  
 
-1 & otherwise \end{cases}</math>
 
-1 & otherwise \end{cases}</math>
 +
|}
  
 
For even <math>n</math>, the above definition breaks ties in favor of 1, although any arbitrary rule may be used instead.
 
For even <math>n</math>, the above definition breaks ties in favor of 1, although any arbitrary rule may be used instead.

Revision as of 13:39, 20 November 2019

Definition

A function [math]f:\{-1,1\}^n \to \{-1,1\}[/math] is called a majority function if [math]f(x)[/math] returns the most common bit in the input:

[math] f(x) = \begin{cases} 1, & if ~ \sum_i x_i \geq 0 \\ -1 & otherwise \end{cases}[/math]

For even [math]n[/math], the above definition breaks ties in favor of 1, although any arbitrary rule may be used instead.

Majority is a special case of the perceptron function.

Properties

References

  1. Ryan O'Donnell, Analysis of Boolean functions, [1]
  2. A. Razborov, Lower bounds on the size of bounded-depth networks over a complete basis with logical addition (Russian), in Matematicheskie Zametki, Vol. 41, No 4, 1987, pages 598-607. English translation in Mathematical Notes of the Academy of Sci. of the USSR, 41(4):333-338, 1987.
  3. O’Donnell R., Wimmer K. (2007) | Approximation by DNF: Examples and Counterexamples. In: Arge L., Cachin C., Jurdziński T., Tarlecki A. (eds) Automata, Languages and Programming. ICALP 2007. Lecture Notes in Computer Science, vol 4596. Springer, Berlin, Heidelberg