Difference between revisions of "Iterated majority"
m (→Definition) |
m |
||
Line 16: | Line 16: | ||
== References == | == References == | ||
− | [[Category:symmetric function]] [[Category:monotone function]] [[Category:balanced function]] | + | [[Category:transitive-symmetric function]] [[Category:monotone function]] [[Category:balanced function]] |
Revision as of 12:16, 26 November 2019
Definition
Let [math]n = 3^k[/math]. The iterated majority function [math]f:\{-1,1\}^n \to \{-1,1\}[/math] is a recursively-defined variation on the majority function:
[math] f(x) = \begin{cases} \textrm{maj}(x), & \textrm{if}~ n = 3 \\ \textrm{maj}(f(x^{(1)}),f(x^{(2)}),f(x^{(3)}) & \textrm{otherwise}, \end{cases}[/math]
where [math]x^{(1)} = (x_1,x_2\ldots x_{n/3})[/math], [math]x^{(2)} = (x_{n/3+1},\ldots x_{2n/3})[/math] and [math]x^{(3)} = (x_{2n/3+1},\ldots x_{n})[/math].
Properties
- TODO
- TODO: add influence.