Difference between revisions of "Wegener's monotone address"

From Boolean Zoo
Jump to: navigation, search
m
m (Definition)
 
Line 1: Line 1:
 
== Definition ==
 
== Definition ==
For even <math>k</math>, let <math>n = k + \binom{k}{2}</math>. '''Wegner's monotone address''' function <math>f:\{-1,1\}^{n} \to \{-1,1\}</math> is defined as follows. Let <math>A = \{S \subseteq \{1,\ldots,k \} : |S| = k/2 \}</math> be the subsets of <math>1\ldots k</math> of size <math>k/2</math>, and let <math>\alpha</math> be an arbitrary one-to-one mapping from <math>A</math> to <math>\{1,\ldots, \binom{k}{2} \}</math>. Denote by <math>h(x)</math> the Hamming weight of <math>x</math>, i.e the number of ones in the vector <math>x</math>. Then <math>f(x)</math> is defined as follows:
+
For even <math>k</math>, let <math>n = k + \binom{k}{k/2}</math>. '''Wegner's monotone address''' function <math>f:\{-1,1\}^{n} \to \{-1,1\}</math> is defined as follows. Let <math>A = \{S \subseteq \{1,\ldots,k \} : |S| = k/2 \}</math> be the subsets of <math>1\ldots k</math> of size <math>k/2</math>, and let <math>\alpha</math> be an arbitrary one-to-one mapping from <math>A</math> to <math>\{1,\ldots, \binom{k}{k/2} \}</math>. Denote by <math>h(x)</math> the Hamming weight of <math>x</math>, i.e the number of ones in the vector <math>x</math>. Then <math>f(x)</math> is defined as follows:
  
 
:::{| class="wikitable"
 
:::{| class="wikitable"
 
|-
 
|-
|<math>f(x_1,\ldots,x_k,y_1,\ldots,y_{\binom{k}{2}}) = \begin{cases}  
+
|<math>f(x_1,\ldots,x_k,y_1,\ldots,y_{\binom{k}{k/2}}) = \begin{cases}  
 
-1, & if ~  h(x_1,\ldots,x_k) < k / 2 \\  
 
-1, & if ~  h(x_1,\ldots,x_k) < k / 2 \\  
 
+1 & if ~  h(x_1,\ldots,x_k) > k / 2 \\
 
+1 & if ~  h(x_1,\ldots,x_k) > k / 2 \\

Latest revision as of 06:10, 24 January 2023

Definition

For even [math]k[/math], let [math]n = k + \binom{k}{k/2}[/math]. Wegner's monotone address function [math]f:\{-1,1\}^{n} \to \{-1,1\}[/math] is defined as follows. Let [math]A = \{S \subseteq \{1,\ldots,k \} : |S| = k/2 \}[/math] be the subsets of [math]1\ldots k[/math] of size [math]k/2[/math], and let [math]\alpha[/math] be an arbitrary one-to-one mapping from [math]A[/math] to [math]\{1,\ldots, \binom{k}{k/2} \}[/math]. Denote by [math]h(x)[/math] the Hamming weight of [math]x[/math], i.e the number of ones in the vector [math]x[/math]. Then [math]f(x)[/math] is defined as follows:

[math]f(x_1,\ldots,x_k,y_1,\ldots,y_{\binom{k}{k/2}}) = \begin{cases} -1, & if ~ h(x_1,\ldots,x_k) \lt k / 2 \\ +1 & if ~ h(x_1,\ldots,x_k) \gt k / 2 \\ y_{\alpha(x_1,\ldots,x_k)} & if ~ h(x_1,\ldots,x_k) = k / 2 \end{cases}. [/math]

In words, if the first [math]k[/math] input bits have Hamming weight less than [math]k/2[/math], the function's value is [math]-1[/math]. If the Hamming weight is greater than [math]k/2[/math], the value is [math]+1[/math]. And if the Hamming weight is exactly [math]k/2[/math], then the [math]n[/math] bits serve to select an arbitrary bit from the rest of the input, similar to the address function.

Properties

  • As the name suggests, the function is monotone.
  • The critical complexity of [math]f[/math] is [math]k/2 + 1[/math]. [1]
  • The function [math]f[/math] has sensitivity [math]\frac{1}{2}\log n + \frac{1}{4} \log\log n + O(1). [/math] [1] TODO: add a word about this: this value should be an extremal sensitivity value

References

  1. 1.0 1.1 Proposition 3 in Ingo Wegener, The critical complexity of all (monotone) boolean functions and monotone graph properties, Information and control 1985.