Difference between revisions of "Address"

From Boolean Zoo
Jump to: navigation, search
m
m (Definition)
Line 2: Line 2:
 
Let <math>n = k + 2^k</math>. A function <math>f:\{-1,1\}^n \to \{-1,1\}</math> is called an '''address function''' if it returns the bit pointed to by the first <math>k</math> bits:
 
Let <math>n = k + 2^k</math>. A function <math>f:\{-1,1\}^n \to \{-1,1\}</math> is called an '''address function''' if it returns the bit pointed to by the first <math>k</math> bits:
  
<math>f(x_1, \ldots, x_k, y_1,\ldots,y_{2^k}) = y_{\tilde{x}}, </math>
+
:::{| class="wikitable"
 +
|-
 +
|<math>f(x_1, \ldots, x_k, y_1,\ldots,y_{2^k}) = y_{\tilde{x}}, </math>
 +
|}
  
where <math>\tilde{x}</math> is number whose binary representation of the vector <math>(x_1,\ldots, x_k)</math>.  
+
where <math>\tilde{x}</math> is number whose binary representation of the vector <math>(x_1,\ldots, x_k)</math>.
  
 
== Properties ==  
 
== Properties ==  

Revision as of 13:37, 20 November 2019

Definition

Let [math]n = k + 2^k[/math]. A function [math]f:\{-1,1\}^n \to \{-1,1\}[/math] is called an address function if it returns the bit pointed to by the first [math]k[/math] bits:

[math]f(x_1, \ldots, x_k, y_1,\ldots,y_{2^k}) = y_{\tilde{x}}, [/math]

where [math]\tilde{x}[/math] is number whose binary representation of the vector [math](x_1,\ldots, x_k)[/math].

Properties

  • Please add some properties! Start off with relation to Juntas.

References