Difference between revisions of "Fourier representation"

From Boolean Zoo
Jump to: navigation, search
m (Definition)
(Definition)
Line 1: Line 1:
== Definition ==
+
== General ==
 
Every Boolean function <math>f:\{-1,1\}^n \to \{-1,1\}</math> may be uniquely written as a multivariate polynomial:
 
Every Boolean function <math>f:\{-1,1\}^n \to \{-1,1\}</math> may be uniquely written as a multivariate polynomial:
  
Line 5: Line 5:
  
 
where <math>\hat{f}_S</math> are real numbers called the '''Fourier coefficients''' of <math>f</math>.  
 
where <math>\hat{f}_S</math> are real numbers called the '''Fourier coefficients''' of <math>f</math>.  
 +
 +
The set of functions <math>\{\underset{i\in S}{\prod}x_{i}|S\subseteq\{1,2,...,n\}\}</math> is an orthonormal basis of the vector space of all boolean functions <math>f:\{-1,1\}^{n}\to\mathbb{R}</math> with the inner product:<br><br>
 +
<math><f,g>=2^{-n}\underset{x\in\{-1,1\}^{n}}{\sum}f(x)g(x)=\underset{x\sim\{-1,1\}^{n}}{\mathbb{E}}[f(x)g(x)]</math><br>
 +
Therefore, Parseval's and Plancherel's identities holds:
 +
 +
<math><f,f>=\underset{S\in\{1,..,n\}}{\sum}\hat{f}(S)^{2}</math>
 +
 +
<math><f,g>=\underset{S\in\{1,..,n\}}{\sum}\hat{f}(S)\hat{g}(S)</math>
  
 
TODO: Parseval
 
TODO: Parseval

Revision as of 12:52, 23 September 2019

General

Every Boolean function [math]f:\{-1,1\}^n \to \{-1,1\}[/math] may be uniquely written as a multivariate polynomial:

[math] f(x) = \sum_{S \subseteq [n]} \hat{f}_S \prod_{i \in S} x_i [/math],

where [math]\hat{f}_S[/math] are real numbers called the Fourier coefficients of [math]f[/math].

The set of functions [math]\{\underset{i\in S}{\prod}x_{i}|S\subseteq\{1,2,...,n\}\}[/math] is an orthonormal basis of the vector space of all boolean functions [math]f:\{-1,1\}^{n}\to\mathbb{R}[/math] with the inner product:

[math]\lt f,g\gt =2^{-n}\underset{x\in\{-1,1\}^{n}}{\sum}f(x)g(x)=\underset{x\sim\{-1,1\}^{n}}{\mathbb{E}}[f(x)g(x)][/math]
Therefore, Parseval's and Plancherel's identities holds:

[math]\lt f,f\gt =\underset{S\in\{1,..,n\}}{\sum}\hat{f}(S)^{2}[/math]

[math]\lt f,g\gt =\underset{S\in\{1,..,n\}}{\sum}\hat{f}(S)\hat{g}(S)[/math]

TODO: Parseval

TODO: The Fourier weight at depth k is... The Fourier weight at depth >= k is...

Properties

  • TODO. Start off with relation between Fourier weight and other complexity measures such as circuit size, sensitivity, decision tree depth.

References