Difference between revisions of "Majority"

From Boolean Zoo
Jump to: navigation, search
m
m (Properties)
Line 16: Line 16:
 
* Majority is the unique function that is [[:Category:symmetric function|symmetric]], [[:Category:monotone function|monotone]] and [[:Category:odd function|odd]] function. TODO May's theorem, credit.
 
* Majority is the unique function that is [[:Category:symmetric function|symmetric]], [[:Category:monotone function|monotone]] and [[:Category:odd function|odd]] function. TODO May's theorem, credit.
 
* Majority is not in [[Circuit_complexity#AC0 | AC<sup>0</sup>]], even if we allow using [[mod q]] functions as gates for prime <math>q</math>. <ref>A. Razborov, Lower bounds on the size of bounded-depth networks over a complete basis with logical addition (Russian), in Matematicheskie Zametki, Vol. 41, No 4, 1987, pages 598-607. English translation in Mathematical Notes of the Academy of Sci. of the USSR, 41(4):333-338, 1987.</ref>
 
* Majority is not in [[Circuit_complexity#AC0 | AC<sup>0</sup>]], even if we allow using [[mod q]] functions as gates for prime <math>q</math>. <ref>A. Razborov, Lower bounds on the size of bounded-depth networks over a complete basis with logical addition (Russian), in Matematicheskie Zametki, Vol. 41, No 4, 1987, pages 598-607. English translation in Mathematical Notes of the Academy of Sci. of the USSR, 41(4):333-338, 1987.</ref>
 +
* For every <math>\varepsilon > 0 </math>, Majority can be <math>\varepsilon</math>-approximated by a DNF of size <math>2^{O(\sqrt{n})}</math>. <ref>O’Donnell R., Wimmer K. (2007) [https://link.springer.com/chapter/10.1007/978-3-540-73420-8_19 | Approximation by DNF: Examples and Counterexamples]. In: Arge L., Cachin C., Jurdziński T., Tarlecki A. (eds) Automata, Languages and Programming. ICALP 2007. Lecture Notes in Computer Science, vol 4596. Springer, Berlin, Heidelberg</ref>
  
 
== References ==
 
== References ==

Revision as of 12:14, 18 November 2019

Definition

A function [math]f:\{-1,1\}^n \to \{-1,1\}[/math] is called a majority function if [math]f(x)[/math] returns the most common bit in the input:

[math] f(x) = \begin{cases} 1, & if ~ \sum_i x_i \geq 0 \\ -1 & otherwise \end{cases}[/math]

For even [math]n[/math], the above definition breaks ties in favor of 1, although any arbitrary rule may be used instead.

Majority is a special case of the perceptron function.

Properties

References

  1. Ryan O'Donnell, Analysis of Boolean functions, [1]
  2. A. Razborov, Lower bounds on the size of bounded-depth networks over a complete basis with logical addition (Russian), in Matematicheskie Zametki, Vol. 41, No 4, 1987, pages 598-607. English translation in Mathematical Notes of the Academy of Sci. of the USSR, 41(4):333-338, 1987.
  3. O’Donnell R., Wimmer K. (2007) | Approximation by DNF: Examples and Counterexamples. In: Arge L., Cachin C., Jurdziński T., Tarlecki A. (eds) Automata, Languages and Programming. ICALP 2007. Lecture Notes in Computer Science, vol 4596. Springer, Berlin, Heidelberg