Difference between revisions of "Perceptron"

From Boolean Zoo
Jump to: navigation, search
m
m (Definition)
Line 2: Line 2:
 
Let <math>n</math> be a positive integer and let <math>t, \{w_i\}_{i=1}^n</math> be real numbers. The '''perceptron''' function, or '''linear threshold''' function <math>f:\{-1,1\}^n \to \{-1,1\}</math> with weights <math>w_i</math> and threshold <math>t</math> is defined as  
 
Let <math>n</math> be a positive integer and let <math>t, \{w_i\}_{i=1}^n</math> be real numbers. The '''perceptron''' function, or '''linear threshold''' function <math>f:\{-1,1\}^n \to \{-1,1\}</math> with weights <math>w_i</math> and threshold <math>t</math> is defined as  
  
<math> f(x) = \begin{cases} 1, & \text{if} ~ \sum_i w_i x_i \geq t \\  
+
:::{| class="wikitable"
 +
|-
 +
|<math> f(x) = \begin{cases} 1, & \text{if} ~ \sum_i w_i x_i \geq t \\  
 
-1 & \text{otherwise} \end{cases}</math>
 
-1 & \text{otherwise} \end{cases}</math>
 +
|}
  
The [[majority]] function is a special case of the perceptron, with threshold <math>t=0</math> and all weights <math>w_i</math> equal to each other.  
+
The [[majority]] function is a special case of the perceptron, with threshold <math>t=0</math> and all weights <math>w_i</math> equal to each other.
  
 
== Properties ==  
 
== Properties ==  

Revision as of 13:38, 20 November 2019

Definition

Let [math]n[/math] be a positive integer and let [math]t, \{w_i\}_{i=1}^n[/math] be real numbers. The perceptron function, or linear threshold function [math]f:\{-1,1\}^n \to \{-1,1\}[/math] with weights [math]w_i[/math] and threshold [math]t[/math] is defined as

[math] f(x) = \begin{cases} 1, & \text{if} ~ \sum_i w_i x_i \geq t \\ -1 & \text{otherwise} \end{cases}[/math]

The majority function is a special case of the perceptron, with threshold [math]t=0[/math] and all weights [math]w_i[/math] equal to each other.

Properties

  • If all weights are equal to each other, the function is symmetric.
  • If all weights are non-negative, or all weights are non-positive, the function is monotone.
  • The weights and threshold may be chosen so that the function is balanced.
  • The perceptron is a special case of the polynomial threshold function.
  • TODO

References