Difference between revisions of "Iterated majority"

From Boolean Zoo
Jump to: navigation, search
m (Definition)
Line 11: Line 11:
  
 
== Properties ==  
 
== Properties ==  
* TODO
+
* The <math>p</math>-biased influence of every bit is bounded by <math>O(2^{-n})</math>. Thus <math>\sum_i \mathrm{Inf}_i^p(f)^2 \to 0</math>, and so the iterated majority function is [[noise sensitivity|noise sensitive]] for every constant <math>p</math>.
* TODO: add influence.
+
* Let <math>p_n = 1/2 - n^\alpha (2/3)^n</math>. If <math>\alpha > \log(3/2)/\log(2)</math> then <math>f</math> is [[volatility|lame]] wrt <math>p_n</math>, and if <math>\alpha < \log(3/2)/\log(2)</math> then <math>f</math> is [[volatility|volatile]].  <ref>Johan Jonasson, Jeffrey E. Steif, [https://www.sciencedirect.com/science/article/pii/S0304414916000648 Volatility of Boolean functions], Stochastic Processes and their Applications, Theorem 1.25</ref>
 +
* TODO: add more exact influence.
 
* TODO: add revealment.
 
* TODO: add revealment.
  

Revision as of 12:47, 1 November 2020

Definition

Let [math]n = 3^k[/math]. The iterated majority function [math]f:\{-1,1\}^n \to \{-1,1\}[/math] is a recursively-defined variation on the majority function:

[math] f(x) = \begin{cases} \textrm{maj}(x), & \textrm{if}~ n = 3 \\ \textrm{maj}(f(x^{(1)}),f(x^{(2)}),f(x^{(3)}) & \textrm{otherwise}, \end{cases}[/math]

where [math]x^{(1)} = (x_1,x_2\ldots x_{n/3})[/math], [math]x^{(2)} = (x_{n/3+1},\ldots x_{2n/3})[/math] and [math]x^{(3)} = (x_{2n/3+1},\ldots x_{n})[/math].

Properties

  • The [math]p[/math]-biased influence of every bit is bounded by [math]O(2^{-n})[/math]. Thus [math]\sum_i \mathrm{Inf}_i^p(f)^2 \to 0[/math], and so the iterated majority function is noise sensitive for every constant [math]p[/math].
  • Let [math]p_n = 1/2 - n^\alpha (2/3)^n[/math]. If [math]\alpha \gt \log(3/2)/\log(2)[/math] then [math]f[/math] is lame wrt [math]p_n[/math], and if [math]\alpha \lt \log(3/2)/\log(2)[/math] then [math]f[/math] is volatile. [1]
  • TODO: add more exact influence.
  • TODO: add revealment.

References

  1. Johan Jonasson, Jeffrey E. Steif, Volatility of Boolean functions, Stochastic Processes and their Applications, Theorem 1.25