Perceptron

From Boolean Zoo
Revision as of 07:23, 1 October 2018 by Renan (talk | contribs) (Created page with "== Definition == Let <math>n</math> be a positive integer and let <math>t, \{w_i\}_{i=1}^n</math> be real numbers. The '''perceptron''' function, or '''linear threshold''' fun...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Definition

Let [math]n[/math] be a positive integer and let [math]t, \{w_i\}_{i=1}^n[/math] be real numbers. The perceptron function, or linear threshold function with weights [math]w_i[/math] and threshold [math]t[/math] is defined as

[math] f(x) = \begin{cases} 1, & \text{if} ~ \sum_i w_i x_i \geq t \\ -1 & \text{otherwise} \end{cases}[/math]

The majority function is a special case of the perceptron, with threshold [math]t=0[/math] and all weights [math]w_i[/math] equal to each other.

Depending on the choice of weights and threshold, the perceptron may be symmetric, balanced, or monotone.

Properties

  • TODO

References