Fourier representation
Contents
[hide]General
Every Boolean function f:\{-1,1\}^n \to \{-1,1\} may be uniquely written as a multivariate polynomial:
f(x) = \sum_{S \subseteq [n]} \hat{f}_S \prod_{i \in S} x_i ,
where \hat{f}_S are real numbers called the Fourier coefficients of f.
The set of functions \{\underset{i\in S}{\prod}x_{i}|S\subseteq\{1,2,...,n\}\} is an orthonormal basis of the vector space of all boolean functions f:\{-1,1\}^{n}\to\mathbb{R} with the inner product:
\lt f,g\gt =2^{-n}\underset{x\in\{-1,1\}^{n}}{\sum}f(x)g(x)=\underset{x\sim\{-1,1\}^{n}}{\mathbb{E}}[f(x)g(x)]
Therefore, Parseval's and Plancherel's identities holds:
\lt f,f\gt =\underset{S\in\{1,..,n\}}{\sum}\hat{f}(S)^{2}
\lt f,g\gt =\underset{S\in\{1,..,n\}}{\sum}\hat{f}(S)\hat{g}(S)
TODO: Parseval
TODO: The Fourier weight at depth k is... The Fourier weight at depth >= k is...
The Fourier Weight
For f:\{-1,1\}^{n}\to\mathbb{R} and 0\leq k\leq n the Fourier weight of f at degree k (or depht k) is:
W^{k}[f]=\underset{S\subseteq\{1,...n\},|s|=k}{\sum\hat{f}(S)^{2}}
For f:\{-1,1\}^{n}\to\{-1,1\}:
W^{k}[f]=\underset{S\sim2^{\{1,...n\}}}{\mathbb{P}[|S|=k]}
Properties
- TODO. Start off with relation between Fourier weight and other complexity measures such as circuit size, sensitivity, decision tree depth.