Partition size
Definition
Let [math]f: \{-1,1\}^n \to \{-1,1\}[/math] be a Boolean function. The partition size of [math]f[/math], often denoted [math]P(f)[/math], is the minimum size of a partition of the Boolean cube [math]\{-1,1\}^n[/math] into disjoint subcubes such that [math]f[/math] is constant on each subcube.
Properties
- The partition size is (trivially) always smaller than the decision tree size, [math]P(f) \leq DT(f) [/math].
- If [math]f[/math] is monotone, then [math]\mathrm{Inf}(f) \leq \sqrt{P(f)}[/math] [1].
References
- ↑ Ryan O'Donnell, Rocco Servedio, Learning Monotone Functions from Random Examples in Polynomial Time